Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.371
Filtrar
1.
J Biol Chem ; 299(8): 104803, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37172723

RESUMO

Interleukin-1ß is one of the most potent inducers of beta cell inflammation in the lead-up to type 1 diabetes. We have previously reported that IL1ß-stimulated pancreatic islets from mice with genetic ablation of stress-induced pseudokinase TRB3(TRB3KO) show attenuated activation kinetics for the MAP3K MLK3 and JNK stress kinases. However, JNK signaling constitutes only a portion of the cytokine-induced inflammatory response. Here we report that TRB3KO islets also show a decrease in amplitude and duration of IL1ß-induced phosphorylation of TAK1 and IKK, kinases that drive the potent NF-κB proinflammatory signaling pathway. We observed that TRB3KO islets display decreased cytokine-induced beta cell death, preceded by a decrease in select downstream NF-κB targets, including iNOS/NOS2 (inducible nitric oxide synthase), a mediator of beta cell dysfunction and death. Thus, loss of TRB3 attenuates both pathways required for a cytokine-inducible, proapoptotic response in beta cells. In order to better understand the molecular basis of TRB3-enhanced, post-receptor IL1ß signaling, we interrogated the TRB3 interactome using coimmunoprecipitation followed by mass spectrometry to identify immunomodulatory protein Flightless homolog 1 (Fli1) as a novel, TRB3-interacting protein. We show that TRB3 binds and disrupts Fli1-dependent sequestration of MyD88, thereby increasing availability of this most proximal adaptor required for IL1ß receptor-dependent signaling. Fli1 sequesters MyD88 in a multiprotein complex resulting in a brake on the assembly of downstream signaling complexes. By interacting with Fli1, we propose that TRB3 lifts the brake on IL1ß signaling to augment the proinflammatory response in beta cells.


Assuntos
Proteínas de Ciclo Celular , Interleucina-1beta , Transdução de Sinais , Animais , Camundongos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais/genética , Inibidores Enzimáticos/farmacologia , Apoptose/efeitos dos fármacos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/fisiologia , Ativação Transcricional/genética
3.
Front Endocrinol (Lausanne) ; 14: 1060675, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761184

RESUMO

Introduction: High intracellular concentrations of adenosine and 2'-deoxyadenosine have been suggested to be an important mediator of cell death. The aim of the present study was to characterize adenosine-induced death in insulin-producing beta-cells, at control and high glucose + palmitate-induced stress conditions. Methods: Human insulin-producing EndoC-betaH1 cells were treated with adenosine, 2'-deoxyadenosine, inosine and high glucose + sodium palmitate, and death rates using flow cytometry were studied. Results: We observed that adenosine and the non-receptor-activating analogue 2-deoxyadenosine, but not the adenosine deamination product inosine, promoted beta-cell apoptosis at concentrations exceeding maximal adenosine-receptor stimulating concentrations. Both adenosine and inosine were efficiently taken up by EndoC-betaH1 cells, and inosine counteracted the cell death promoting effect of adenosine by competing with adenosine for uptake. Both adenosine and 2'-deoxyadenosine promptly reduced insulin-stimulated production of plasma membrane PI(3,4,5)P3, an effect that was reversed upon wash out of adenosine. In line with this, adenosine, but not inosine, rapidly diminished Akt phosphorylation. Both pharmacological Bax inhibition and Akt activation blocked adenosine-induced beta-cell apoptosis, indicating that adenosine/2'-deoxyadenosine inhibits the PI3K/Akt/BAD anti-apoptotic pathway. High glucose + palmitate-induced cell death was paralleled by increased intracellular adenosine and inosine levels. Overexpression of adenosine deaminase-1 (ADA1) in EndoC-betaH1 cells, which increased Akt phosphorylation, prevented both adenosine-induced apoptosis and high glucose + palmitate-induced necrosis. ADA2 overexpression not only failed to protect against adenosine and high glucose + palmitate-activated cell death, but instead potentiated the apoptosis-stimulating effect of adenosine. In line with this, ADA1 overexpression increased inosine production from adenosine-exposed cells, whereas ADA2 did not. Knockdown of ADA1 resulted in increased cell death rates in response to both adenosine and high glucose + palmitate. Inhibition of miR-30e-3p binding to the ADA1 mRNA 3'-UTR promoted the opposite effects on cell death rates and reduced intracellular adenosine contents. Discussion: It is concluded that intracellular adenosine/2'-deoxyadenosine regulates negatively the PI3K pathway and is therefore an important mediator of beta-cell apoptosis. Adenosine levels are controlled, at least in part, by ADA1, and strategies to upregulate ADA1 activity, during conditions of metabolic stress, could be useful in attempts to preserve beta-cell mass in diabetes.


Assuntos
Adenosina , Células Secretoras de Insulina , Proteínas Proto-Oncogênicas c-akt , Humanos , Adenosina/farmacologia , Apoptose , Glucose/farmacologia , Glucose/metabolismo , Insulina/metabolismo , Palmitatos , Fosfatidilinositol 3-Quinases , Células Secretoras de Insulina/citologia
4.
PLoS One ; 17(4): e0266609, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35395037

RESUMO

OBJECTIVE: Stem cell therapy is a promising approach for diabetes via promoting the differentiation of insulin-producing cells (IPCs). This study aimed to screen the differentially expressed miRNAs (DEmiRNAs) during the differentiation of muscle-derived stem cells (MDSCs) into IPCs, and uncover the underlying function and mechanism of a specific DEmiRNA, miR-708-5p. METHODS: MDSCs were successfully isolated from the leg muscle of rats, and were induced for IPCs differentiation through a five-stage protocol. miRNA microarray assay was performed for screening DEmiRNAs during differentiation. The features of MDSCs-derived IPCs were identified by qRT-PCR, flow cytometry, and immunofluorescence staining. The targeting of STK4 by miR-708-5p was examined by luciferase assay. The protein expression of STK4, YAP1, and p-YAP1 was determined by Western blot and immunofluorescence staining. RESULTS: MDSCs were successfully isolated and differentiated into IPCs. A total of 12 common DEmiRNAs were obtained during five-stage differentiation. Among them, miR-708-5p that highly expressed in MDSCs-derived IPCs was selected. Overexpression of miR-708-5p upregulated some key transcription factors (Pdx1, Ngn3, Nkx2.2, Nkx6.1, Gata4, Gata6, Pax4, and Pax6) involving in IPCs differentiation, and increased insulin positive cells. In addition, STK4 was identified as the target gene of miR-708-5p. miR-708-5p overexpression downregulated the expression of STK4 and the downstream phosphorylated YAP1. CONCLUSIONS: There were 12 DEmiRNAs involved in the differentiation of MDSCs into IPCs. miR-708-5p promoted MDSCs differentiation into IPCs probably by targeting STK4-mediated Hippo-YAP1 signaling pathway.


Assuntos
Diferenciação Celular , Células Secretoras de Insulina , MicroRNAs , Mioblastos , Proteínas Serina-Treonina Quinases , Células-Tronco , Animais , Diferenciação Celular/genética , Insulina , Células Secretoras de Insulina/citologia , MicroRNAs/genética , Músculos/metabolismo , Mioblastos/citologia , Proteínas Serina-Treonina Quinases/genética , Ratos , Células-Tronco/citologia
5.
Cell Mol Life Sci ; 79(3): 186, 2022 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-35279781

RESUMO

Transcriptional co-activator with PDZ-binding motif (TAZ) is a key mediator of the Hippo signaling pathway and regulates structural and functional homeostasis in various tissues. TAZ activation is associated with the development of pancreatic cancer in humans, but it is unclear whether TAZ directly affects the structure and function of the pancreas. So we sought to identify the TAZ function in the normal pancreas. TAZ defect caused structural changes in the pancreas, particularly islet cell shrinkage and decreased insulin production and ß-cell markers expression, leading to hyperglycemia. Interestingly, TAZ physically interacted with the pancreatic and duodenal homeobox 1 (PDX1), a key insulin transcription factor, through the N-terminal domain of TAZ and the homeodomain of PDX1. TAZ deficiency decreased the DNA-binding and transcriptional activity of PDX1, whereas TAZ overexpression promoted PDX1 activity and increased insulin production even in a low glucose environment. Indeed, high glucose increased insulin production by turning off the Hippo pathway and inducing TAZ activation in pancreatic ß-cells. Ectopic TAZ overexpression along with PDX1 activation was sufficient to produce insulin in non-ß-cells. TAZ deficiency impaired the mesenchymal stem cell differentiation into insulin-producing cells (IPCs), whereas TAZ recovery restored normal IPCs differentiation. Compared to WT control, body weight increased in TAZ-deficient mice with age and even more with a high-fat diet (HFD). TAZ deficiency significantly exacerbated HFD-induced glucose intolerance and insulin resistance. Therefore, TAZ deficiency impaired pancreatic insulin production, causing hyperglycemia and exacerbating HFD-induced insulin resistance, indicating that TAZ may have a beneficial effect in treating insulin deficiency in diabetes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Homeodomínio/metabolismo , Insulina/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Diferenciação Celular , Linhagem Celular , Dieta Hiperlipídica , Glucose/farmacologia , Via de Sinalização Hippo/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Humanos , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Hiperglicemia/veterinária , Insulina/genética , Resistência à Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Transativadores/genética , Ativação Transcricional
6.
Biochim Biophys Acta Mol Cell Res ; 1869(5): 119235, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35151663

RESUMO

Glucose homeostasis is maintained by hormones secreted from different types of pancreatic islets and its dysregulation can result in diseases including diabetes mellitus. The secretion of hormones from pancreatic islets is highly complex and tightly controlled by G protein-coupled receptors (GPCRs). Moreover, GPCR signaling may play a role in enhancing islet cell replication and proliferation. Thus, targeting GPCRs offers a promising strategy for regulating the functionality of pancreatic islets. Here, available RNAseq datasets from human and mouse islets were used to identify the GPCR expression profile and the impact of GPCR signaling for normal islet functionality is discussed.


Assuntos
Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células Secretoras de Glucagon/citologia , Células Secretoras de Glucagon/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/crescimento & desenvolvimento , Células Secretoras de Polipeptídeo Pancreático/citologia , Células Secretoras de Polipeptídeo Pancreático/metabolismo , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais , Transcriptoma
7.
Development ; 149(2)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35088828

RESUMO

Regeneration-competent species possess the ability to reverse the progression of severe diseases by restoring the function of the damaged tissue. However, the cellular dynamics underlying this capability remain unexplored. Here, we have used single-cell transcriptomics to map de novo ß-cell regeneration during induction and recovery from diabetes in zebrafish. We show that the zebrafish has evolved two distinct types of somatostatin-producing δ-cells, which we term δ1- and δ2-cells. Moreover, we characterize a small population of glucose-responsive islet cells, which share the hormones and fate-determinants of both ß- and δ1-cells. The transcriptomic analysis of ß-cell regeneration reveals that ß/δ hybrid cells provide a prominent source of insulin expression during diabetes recovery. Using in vivo calcium imaging and cell tracking, we further show that the hybrid cells form de novo and acquire glucose-responsiveness in the course of regeneration. The overexpression of dkk3, a gene enriched in hybrid cells, increases their formation in the absence of ß-cell injury. Finally, interspecies comparison shows that plastic δ1-cells are partially related to PP cells in the human pancreas. Our work provides an atlas of ß-cell regeneration and indicates that the rapid formation of glucose-responsive hybrid cells contributes to the resolution of diabetes in zebrafish.


Assuntos
Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/citologia , Regeneração , Células Secretoras de Somatostatina/citologia , Animais , Cálcio/metabolismo , Diabetes Mellitus/patologia , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Análise de Célula Única , Células Secretoras de Somatostatina/metabolismo , Peixe-Zebra
8.
J Biol Chem ; 298(3): 101592, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35041827

RESUMO

Type 2 diabetes is a metabolic disorder associated with abnormal glucose homeostasis and is characterized by intrinsic defects in ß-cell function and mass. Trimethylguanosine synthase 1 (TGS1) is an evolutionarily conserved enzyme that methylates small nuclear and nucleolar RNAs and that is involved in pre-mRNA splicing, transcription, and ribosome production. However, the role of TGS1 in ß-cells and glucose homeostasis had not been explored. Here, we show that TGS1 is upregulated by insulin and upregulated in islets of Langerhans from mice exposed to a high-fat diet and in human ß-cells from type 2 diabetes donors. Using mice with conditional (ßTGS1KO) and inducible (MIP-CreERT-TGS1KO) TGS1 deletion, we determined that TGS1 regulates ß-cell mass and function. Using unbiased approaches, we identified a link between TGS1 and endoplasmic reticulum stress and cell cycle arrest, as well as and how TGS1 regulates ß-cell apoptosis. We also found that deletion of TGS1 results in an increase in the unfolded protein response by increasing XBP-1, ATF-4, and the phosphorylation of eIF2α, in addition to promoting several changes in cell cycle inhibitors and activators such as p27 and Cyclin D2. This study establishes TGS1 as a key player regulating ß-cell mass and function. We propose that these observations can be used as a stepping-stone for the design of novel strategies focused on TGS1 as a therapeutic target for the treatment of diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/metabolismo , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout
9.
Mol Med Rep ; 25(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35039874

RESUMO

Type­2 diabetes mellitus (T2DM) causes several complications that affect the quality of life and life span of patients. Hyperbaric oxygen therapy (HBOT) has been used to successfully treat several diseases, including carbon monoxide poisoning, ischemia, infections and diabetic foot ulcer, and increases insulin sensitivity in T2DM. The present study aimed to determine the effect of HBOT on ß­cell function and hepatic gluconeogenesis in streptozotocin (STZ)­induced type­2 diabetic mice. To establish a T2DM model, 7­week­old male C57BL/6J mice were fed a high­fat diet (HFD) and injected once daily with low­dose STZ for 3 days after 1­week HFD feeding. At the 14th week, HFD+HBOT and T2DM+HBOT groups received 1­h HBOT (2 ATA; 100% pure O2) daily from 5:00 to 6:00 p.m. for 7 days. The HFD and T2DM groups were maintained under normobaric oxygen conditions and used as controls. During HBOT, the 12­h nocturnal food intake and body weight were measured daily. Moreover, blood glucose was measured by using a tail vein prick and a glucometer. After the final HBO treatment, all mice were sacrificed to conduct molecular biology experiments. Fasting insulin levels of blood samples of sacrificed mice were measured by an ultrasensitive ELISA kit. Pancreas and liver tissues were stained with hematoxylin and eosin, while immunohistochemistry was performed to determine the effects of HBOT on insulin resistance. TUNEL was used to determine the effects of HBOT on ß­cell apoptosis, and immunoblotting was conducted to determine the ß­cell apoptosis pathway. HBOT notably reduced fasting blood glucose and improved insulin sensitivity in T2DM mice. After HBOT, ß­cell area and ß­cell mass in T2DM mice were significantly increased. HBOT significantly decreased the ß­cell apoptotic rate in T2DM mice via the pancreatic Bcl­2/caspase­3/poly(ADP­ribose) polymerase (PARP) apoptosis pathway. Moreover, HBOT improved the morphology of the liver tissue and increased hepatic glycogen storage in T2DM mice. These findings suggested that HBOT ameliorated the insulin sensitivity of T2DM mice by decreasing the ß­cell apoptotic rate via the pancreatic Bcl­2/caspase­3/PARP apoptosis pathway.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Gluconeogênese/fisiologia , Oxigenoterapia Hiperbárica/métodos , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Animais , Apoptose/fisiologia , Glicemia/metabolismo , Western Blotting , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Jejum/sangue , Teste de Tolerância a Glucose/métodos , Humanos , Insulina/sangue , Células Secretoras de Insulina/citologia , Masculino , Camundongos Endogâmicos C57BL
10.
Mol Cell Endocrinol ; 540: 111506, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34801668

RESUMO

MicroRNAs are crucial regulators for the development, mass and function of pancreatic ß-cells. MiRNA dysregulation is associated with ß-cell dysfunction and development of diabetes. The members of let7 family are important players in regulating cellular growth and metabolism. In this study we investigated the functional role of let7b-5p in the mouse pancreatic ß-cells. We generated pancreatic ß-cell-specific let7b-5p transgenic mouse model and analyzed the glucose metabolic phenotype, ß-cells mass and insulin secretion in vivo. Luciferase reporter assay, immunofluorescence staining and western blot were carried out to study the target genes of let7b-5p in ß-cells. Let7b-5p overexpression impaired the insulin production and secretion of ß-cells and resulted impaired glucose tolerance in mice. The overexpressed let7b-5p inhibited pancreatic ß-cell proliferation and decreased the expression of cyclin D1 and cyclin D2. Our findings demonstrated that let7b-5p was critical in regulating the proliferation and insulin secretion of pancreatic ß-cells.


Assuntos
Secreção de Insulina/genética , Células Secretoras de Insulina/fisiologia , MicroRNAs/fisiologia , Animais , Contagem de Células , Proliferação de Células/genética , Células Cultivadas , Regulação para Baixo/genética , Células HEK293 , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
11.
Mol Cell Endocrinol ; 539: 111473, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610358

RESUMO

High concentrations of free fatty acids (FFAs) or lipopolysaccharide (LPS) could lead to ß-cell apoptosis and dysfunction, while low-grade elevation of FFAs or LPS, which are more common in people with type 2 diabetes mellitus (T2DM) or obesity, have no obvious toxic effect on ß-cells. Palmitate is a component closely related to metabolic disorders in FFAs. Recent studies have found that low-grade elevation of palmitate and LPS synergistically affects the sphingolipid signaling pathway by activating Toll-like receptor 4 (TLR4) and further enhances the expression of inflammatory cytokines in immune cells. Previous studies demonstrated that sphingolipids also played an important role in the occurrence and development of T2DM. This study aimed to investigate the synergistic effects of low-grade elevation of palmitate and LPS on viability, apoptosis and insulin secretion in the rat pancreatic ß-cell line INS-1 or islets and the role of sphingolipids in this process. We showed that low-grade elevation of palmitate or LPS alone did not affect the viability, apoptosis, glucose-stimulated insulin secretion (GSIS) or intracellular insulin content of INS-1 cells or islets, while the combination of the two synergistically inhibited cell viability, induced apoptosis and decreased basal insulin secretion in INS-1 cells or islets. Treatment with palmitate and LPS markedly upregulated TLR4 protein expression and downregulated neutral ceramidase (NCDase) activity and protein expression. Additionally, low-grade elevation of palmitate and LPS synergistically induced a significant increase in ceramide and a decrease in sphingosine-1-phosphate. Blocking TLR4 signaling or overexpressing NCDase remarkably attenuated INS-1 cell injury induced by the combination of palmitate and LPS. However, inhibition of ceramide synthase did not ameliorate injury induced by palmitate and LPS. Overall, we show for the first time that low-grade elevation of palmitate and LPS synergistically induced ß-cell damage by activating TLR4 signaling, inhibiting NCDase activity, and further modulating sphingolipid metabolism, which was different from a high concentration of palmitate-induced ß-cell injury by promoting ceramide synthesis.


Assuntos
Células Secretoras de Insulina/citologia , Lipopolissacarídeos/efeitos adversos , Ceramidase Neutra/metabolismo , Palmitatos/efeitos adversos , Receptor 4 Toll-Like/metabolismo , Animais , Apoptose , Linhagem Celular , Sinergismo Farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , Esfingolipídeos/metabolismo
12.
Biomolecules ; 11(12)2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944536

RESUMO

Serum accumulation of the gut microbial metabolite trimethylamine N-oxide (TMAO) is associated with high caloric intake and type 2 diabetes (T2D). Impaired pancreatic ß-cell function is a hallmark of diet-induced T2D, which is linked to hyperglycemia and hyperlipidemia. While TMAO production via the gut microbiome-liver axis is well defined, its molecular effects on metabolic tissues are unclear, since studies in various tissues show deleterious and beneficial TMAO effects. We investigated the molecular effects of TMAO on functional ß-cell mass. We hypothesized that TMAO may damage functional ß-cell mass by inhibiting ß-cell viability, survival, proliferation, or function to promote T2D pathogenesis. We treated INS-1 832/13 ß-cells and primary rat islets with physiological TMAO concentrations and compared functional ß-cell mass under healthy standard cell culture (SCC) and T2D-like glucolipotoxic (GLT) conditions. GLT significantly impeded ß-cell mass and function by inducing oxidative and endoplasmic reticulum (ER) stress. TMAO normalized GLT-mediated damage in ß-cells and primary islet function. Acute 40µM TMAO recovered insulin production, insulin granule formation, and insulin secretion by upregulating the IRE1α unfolded protein response to GLT-induced ER and oxidative stress. These novel results demonstrate that TMAO protects ß-cell function and suggest that TMAO may play a beneficial molecular role in diet-induced T2D conditions.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Endorribonucleases/metabolismo , Células Secretoras de Insulina/citologia , Metilaminas/farmacologia , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Tipo 2/prevenção & controle , Estresse do Retículo Endoplasmático , Feminino , Microbioma Gastrointestinal , Regulação da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Modelos Biológicos , Estresse Oxidativo , Cultura Primária de Células , Ratos
13.
Phys Rev Lett ; 127(16): 168101, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723613

RESUMO

ß cells are biologically essential for humans and other vertebrates. Because their functionality arises from cell-cell interactions, they are also a model system for collective organization among cells. There are currently two contradictory pictures of this organization: the hub-cell idea pointing at leaders who coordinate the others, and the electrophysiological theory describing all cells as equal. We use new data and computational modeling to reconcile these pictures. We find via a network representation of interacting ß cells that leaders emerge naturally (confirming the hub-cell idea), yet all cells can take the hub role following a perturbation (in line with electrophysiology).


Assuntos
Comunicação Celular/fisiologia , Células Secretoras de Insulina/citologia , Modelos Biológicos , Animais , Humanos
14.
Sci Rep ; 11(1): 22521, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795324

RESUMO

Peptide therapeutics are increasingly used in the treatment of disease, but their administration by injection reduces patient compliance and convenience, especially for chronic diseases. Thus, oral administration of a peptide therapeutic represents a significant advance in medicine, but is challenged by gastrointestinal instability and ineffective uptake into the circulation. Here, we have used glucagon-like peptide-1 (GLP-1) as a model peptide therapeutic for treating obesity-linked type 2 diabetes, a common chronic disease. We describe a comprehensive multidisciplinary approach leading to the development of MEDI7219, a GLP-1 receptor agonist (GLP-1RA) specifically engineered for oral delivery. Sites of protease/peptidase vulnerabilities in GLP-1 were removed by amino acid substitution and the peptide backbone was bis-lipidated to promote MEDI7219 reversible plasma protein binding without affecting potency. A combination of sodium chenodeoxycholate and propyl gallate was used to enhance bioavailability of MEDI7219 at the site of maximal gastrointestinal absorption, targeted by enteric-coated tablets. This synergistic approach resulted in MEDI7219 bioavailability of ~ 6% in dogs receiving oral tablets. In a dog model of obesity and insulin resistance, MEDI7219 oral tablets significantly decreased food intake, body weight and glucose excursions, validating the approach. This novel approach to the development of MEDI7219 provides a template for the development of other oral peptide therapeutics.


Assuntos
Doença Crônica , Sistemas de Liberação de Medicamentos , Receptor do Peptídeo Semelhante ao Glucagon 1 , Peptídeos , Engenharia de Proteínas , Animais , Cricetinae , Humanos , Masculino , Camundongos , Administração Oral , Células CACO-2 , Química Farmacêutica/métodos , Ácido Quenodesoxicólico/administração & dosagem , Células CHO , Doença Crônica/tratamento farmacológico , Cricetulus , Diabetes Mellitus Tipo 2/tratamento farmacológico , Descoberta de Drogas , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Células Secretoras de Insulina/citologia , Camundongos Endogâmicos C57BL , Peptídeos/química , Galato de Propila/administração & dosagem , Engenharia de Proteínas/métodos , Receptores de Glucagon/agonistas , Comprimidos com Revestimento Entérico
15.
J Biol Chem ; 297(6): 101368, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756890

RESUMO

The endoplasmic reticulum (ER) and mitochondria are structurally connected with each other at specific sites termed mitochondria-associated membranes (MAMs). These physical links are composed of several tethering proteins and are important during varied cellular processes, such as calcium homeostasis, lipid metabolism and transport, membrane biogenesis, and organelle remodeling. However, the attributes of specific tethering proteins in these cellular functions remain debatable. Here, we present data to show that one such tether protein, glucose regulated protein 75 (GRP75), is essential in increasing ER-mitochondria contact during palmitate-induced apoptosis in pancreatic insulinoma cells. We demonstrate that palmitate increased GRP75 levels in mouse and rat pancreatic insulinoma cells as well as in mouse primary islet cells. This was associated with increased mitochondrial Ca2+ transfer, impaired mitochondrial membrane potential, increased ROS production, and enhanced physical coupling between the ER and mitochondria. Interestingly, GRP75 inhibition prevented these palmitate-induced cellular aberrations. Additionally, GRP75 overexpression alone was sufficient to impair mitochondrial membrane potential, increase mitochondrial Ca2+ levels and ROS generation, augment ER-mitochondria contact, and induce apoptosis in these cells. In vivo injection of palmitate induced hyperglycemia and hypertriglyceridemia, as well as impaired glucose and insulin tolerance in mice. These animals also exhibited elevated GRP75 levels accompanied by enhanced apoptosis within the pancreatic islets. Our findings suggest that GRP75 is critical in mediating palmitate-induced ER-mitochondrial interaction leading to apoptosis in pancreatic islet cells.


Assuntos
Apoptose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP70/fisiologia , Células Secretoras de Insulina/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/fisiologia , Ácido Palmítico/farmacologia , Animais , Cálcio/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Teste de Tolerância a Glucose , Proteínas de Choque Térmico HSP70/metabolismo , Hiperglicemia/induzido quimicamente , Resistência à Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Transporte de Íons , Camundongos , Proteínas Mitocondriais/metabolismo , Ratos
16.
Cells ; 10(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34831471

RESUMO

Neonatal porcine islets-like clusters (NPICCs) are a promising source for cell therapy of type 1 diabetes. Freshly isolated NPICCs are composed of progenitor cells and endocrine cells, which undergo a maturation process lasting several weeks until the normal beta cell function has developed. Here, we investigated the effects of short-chain fatty acids on the maturation of islet cells isolated from two to three day-old piglets. NPICCs were cultivated with acetate, butyrate and propionate (0-2000 µM) for one to eight days. Incubation with butyrate resulted in a significant upregulation of insulin gene expression and an increased beta cell number, whereas acetate or propionate had only marginal effects. Treatment with specific inhibitors of G-protein-coupled receptor GPR41 (ß-hydroxybutyrate) and/or GPR43 (GPLG0974) did not abolish butyrate induced insulin expression. However, incubation of NPICCs with class I histone deacetylase inhibitors (HDACi) mocetinostat and MS275, but not selective class II HDACi (TMP269, MC1568) mimicked the butyrate effect on beta cell differentiation. Our study revealed that butyrate treatment has the capacity to increase the number of beta cells, which may be predominantly mediated through its HDAC inhibitory activity. Butyrate and specific class I HDAC inhibitors may represent beneficial supplements to promote differentiation of neonatal porcine islet cells towards beta cells for cell replacement therapies.


Assuntos
Butiratos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Células Secretoras de Insulina/citologia , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Histona Desacetilases/metabolismo , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Suínos , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
17.
Pancreas ; 50(7): 942-951, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34643609

RESUMO

ABSTRACT: Type 1 diabetes is an autoimmune disease, and its incidence is usually estimated in the range of 5% to 10%. Currently, the administration of exogenous insulin is the standard of care therapy. However, this therapy is not effective in some patients who may develop some chronic complications. Islet transplantation into the liver is another therapy with promising outcomes; however, the long-term efficacy of this therapeutic option is limited to a small number of patients. Because native extracellular matrix (ECM) components provide a suitable microenvironment for islet functions, engineering a 3-dimensional construct that recapitulates the native pancreatic environment could address these obstacles. Many attempts have been conducted to mimic an in vivo microenvironment to increase the survival of islets or islet-like clusters. With the advent of decellularization technology, it is possible to use a native ECM in organ engineering. Pancreatic decellularized bioscaffold provides proper cell-cell and cell-ECM interactions and retains growth factors that are critical in the determination of cell fate within a native organ. This review summarizes the current knowledge of decellularized matrix technology and addresses its possible limitations before use in the clinic.


Assuntos
Matriz Extracelular/metabolismo , Pâncreas/metabolismo , Engenharia Tecidual/métodos , Tecidos Suporte , Microambiente Tumoral , Animais , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Pâncreas/citologia
18.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639069

RESUMO

The prevalence of type 2 diabetes (T2D) is rapidly increasing across the globe. Fetal exposure to maternal diabetes was correlated with higher prevalence of impaired glucose tolerance and T2D later in life. Previous studies showed aberrant DNA methylation patterns in pancreas of T2D patients. However, the underlying mechanisms remained largely unknown. We utilized human embryonic stem cells (hESC) as the in vitro model for studying the effects of hyperglycemia on DNA methylome and early pancreatic differentiation. Culture in hyperglycemic conditions disturbed the pancreatic lineage potential of hESC, leading to the downregulation of expression of pancreatic markers PDX1, NKX6-1 and NKX6-2 after in vitro differentiation. Genome-wide DNA methylome profiling revealed over 2000 differentially methylated CpG sites in hESC cultured in hyperglycemic condition when compared with those in control glucose condition. Gene ontology analysis also revealed that the hypermethylated genes were enriched in cell fate commitment. Among them, NKX6-2 was validated and its hypermethylation status was maintained upon differentiation into pancreatic progenitor cells. We also established mouse ESC lines at both physiological glucose level (PG-mESC) and conventional hyperglycemia glucose level (HG-mESC). Concordantly, DNA methylome analysis revealed the enrichment of hypermethylated genes related to cell differentiation in HG-mESC, including Nkx6-1. Our results suggested that hyperglycemia dysregulated the epigenome at early fetal development, possibly leading to impaired pancreatic development.


Assuntos
Diferenciação Celular/genética , Metilação de DNA , Células-Tronco Embrionárias/metabolismo , Hiperglicemia/genética , Hiperglicemia/metabolismo , Pâncreas/citologia , Pâncreas/metabolismo , Linhagem Celular , Células Cultivadas , Biologia Computacional/métodos , Diabetes Mellitus Tipo 2 , Células-Tronco Embrionárias/citologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Glucose/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo
19.
Nat Commun ; 12(1): 5991, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645803

RESUMO

The reticulon-3 (RTN3)-driven targeting complex promotes clearance of misfolded prohormones from the endoplasmic reticulum (ER) for lysosomal destruction by ER-phagy. Because RTN3 resides in the cytosolic leaflet of the ER bilayer, the mechanism of selecting misfolded prohormones as ER-phagy cargo on the luminal side of the ER membrane remains unknown. Here we identify the ER transmembrane protein PGRMC1 as an RTN3-binding partner. Via its luminal domain, PGRMC1 captures misfolded prohormones, targeting them for RTN3-dependent ER-phagy. PGRMC1 selects cargos that are smaller than the large size of other reported ER-phagy substrates. Cargos for PGRMC1 include mutant proinsulins that block secretion of wildtype proinsulin through dominant-negative interactions within the ER, causing insulin-deficiency. Chemical perturbation of PGRMC1 partially restores WT insulin storage by preventing ER-phagic degradation of WT and mutant proinsulin. Thus, PGRMC1 acts as a size-selective cargo receptor during RTN3-dependent ER-phagy, and is a potential therapeutic target for diabetes.


Assuntos
Proteínas de Transporte/genética , Retículo Endoplasmático/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proinsulina/genética , Receptores de Progesterona/genética , Animais , Autofagia/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Expressão Gênica , Células HEK293 , Humanos , Células Secretoras de Insulina/citologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Cultura Primária de Células , Proinsulina/metabolismo , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteólise , Ratos , Receptores de Progesterona/metabolismo
20.
Food Chem Toxicol ; 158: 112633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34699923

RESUMO

Streptozotocin (STZ) is a pancreatic ß cell-specific toxicant that is widely used to generate models of diabetes in rodents as well as in the treatment of tumors derived from pancreatic ß cells. DNA alkylation, oxidative stress and mitochondrial toxicity have been recognized as the mechanisms for STZ-induced pancreatic ß cell damage. Here, we found that pancreatic ß cell-specific deficiency of nuclear factor erythroid-derived factor 2-related factor 1 (NFE2L1), a master regulator of the cellular adaptive response to a variety of stresses, in mice led to a dramatic resistance to STZ-induced hyperglycemia. Indeed, fifteen days subsequent to last dosage of STZ, the pancreatic ß cell specific Nfe2l1 knockout [Nfe2l1(ß)-KO] mice showed reduced hyperglycemia, improved glucose tolerance, higher plasma insulin and more intact islets surrounded by exocrine acini compared to the Nfe2l1-Flox control mice with the same treatment. Immunohistochemistry staining revealed a greater amount of insulin-positive cells in the pancreas of Nfe2l1(ß)-KO mice than those in Nfe2l1-Flox mice 15 days after the last STZ injection. In line with this observation, both isolated Nfe2l1(ß)-KO islets and Nfe2l1-deficient MIN6 (Nfe2l1-KD) cells were resistant to STZ-induced toxicity and apoptosis. Furthermore, pretreatment of the MIN6 cells with glycolysis inhibitor 2-Deoxyglucose sensitized Nfe2l1-KD cells to STZ-induced toxicity. These findings demonstrated that loss of Nfe2l1 attenuates pancreatic ß cells damage and dysfunction caused by STZ exposure, partially due to Nfe2l1 deficiency-induced metabolic switch to enhanced glycolysis.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Fator 1 Relacionado a NF-E2 , Animais , Linhagem Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/fisiopatologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/patologia , Células Secretoras de Insulina/fisiologia , Masculino , Camundongos , Fator 1 Relacionado a NF-E2/genética , Fator 1 Relacionado a NF-E2/metabolismo , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...